

AEG - Chicago

Mark Braby, December 9 2021

©2021 ITRON PROPRIETARY

Itron Solutions Manage Critical Infrastructure

Itron connects critical infrastructure and enables outcomes via our platform

ITRON ENABLES OUTCOMES:

- » Smart Energy
- » Smart Water
- » Smart City

Advanced Metering Infrastructure Two-way, Transport Agnostic, Communications

Distributed Intelligence

Delivering Intelligence and Applications to the Edge of the Network for Demand Response & More

Distribution Automation

Advanced Grid Control

Streetlight Canopy

Intelligent Lighting & Increased Network Coverage

Demand Response and Distributed Energy Mgt Analytics and Orchestration of DERs

Smart City Solutions

Connecting Communities to Outcomes such as Safety, Traffic, Smart Parking, Intelligent Transport, Kiosks, and Environmental Sensors

Electric Vehicle Management

Charging Management for Grid Operators and End Customers

Smart Water

Measurement, analytics and optimization of water usage

Root Problem(s) for this Topic

>> Topic: Real-time emissions and price signals

- >> Utility rate structures reflect a <u>forecasted</u> cost of generation + installing & managing grid infrastructure at a determined rate of return. These rate cases happen <u>every 3 years</u>
- Solution Carbon emission calculations are based on an annual emissions factor set by the EPA, and calculated by energy consumers on an annual, <u>backward-looking</u> basis. All customers that use the same kWh look the same from a GHG perspective
- >> EVs can have a massively positive impact on emissions, but only if the charging load is delivered via clean energy
- >> In some parts of the country clean energy generation is being curtailed

Key Obstacles to Overcome

- >> Utilities need to understand real-time energy delivery cost structure and emissions factor
- > These factors need to be signaled to energy customers and ultimately reflected in energy (power) pricing that drives the right behaviors
- >> EV Charging needs to be smart
 - Knowing when and where generation is cleanest will ensure EVs are charging with the cleanest energy possible.
 - By "signaling" to charging customers that the grid is congested, charging schedules can be altered

Example

Fleet Operator

"My vehicles return at 5pm, but energy pricing is high at 5pm because solar generation is decreasing. I am going to delay charging until 3am"

Individual EV owner

"I get home from work and plug-in, but my utility is telling me the grid is dirtiest at this time. I'm going to delay charging until cleaner energy is being produced

Consequences of addressing/not addressing

- >> Accelerates net zero plans from utilities
- >> Provides accurate signals to fleet customers to help them make decisions
- >> Drives 24/7 renewable energy, REC matching
- >> Reduces clean energy "invisible gap" and cost of meeting clean energy targets (reduced storage needs)
- >> Leads to smarter and more cost-effective EV charging for fleets

Drives more cost effective, accurate, and efficient reduction of GHGs

Final Statement

>> Regarding Mobility & Transportation, to achieve Chicago's Carbon & Equity goals, a critical obstacle to overcome is:

Enabling an energy price structure that accounts for 'real-time' emissions signals and grid congestion that can be utilized for smart EV charging, starting with public and private fleets such as the CTA