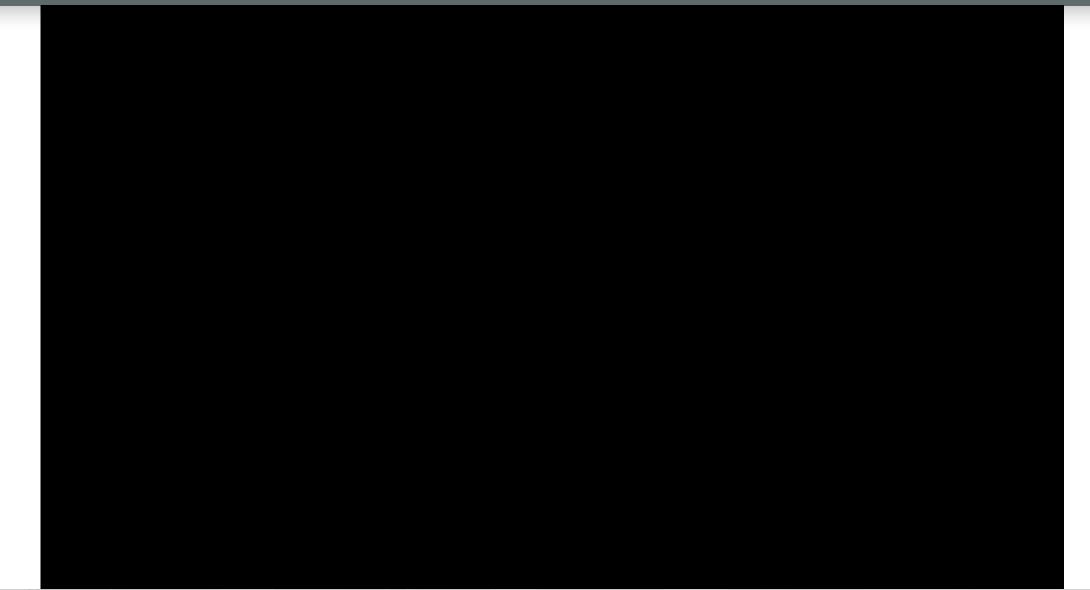
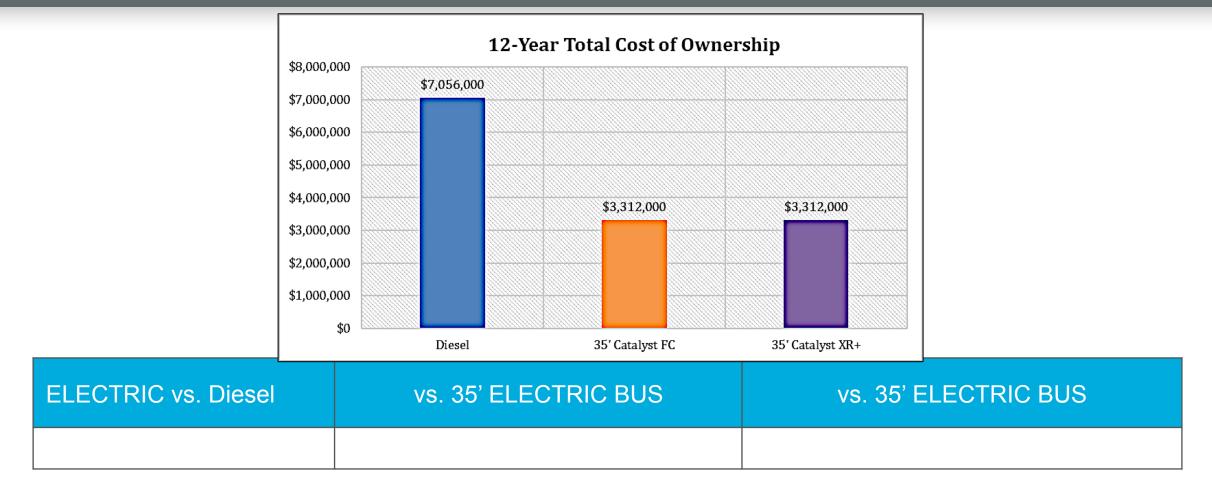
ZERO TAILPIPE EMMISSIONS BATTERY-ELECTRIC BUSES: EFFCIENCY and TECHNOLOGY



BILL WILLIAMS DIRECTOR, COMMERCIAL SALES December 7, 2017


DRIVING THE TRANSFORMATION OF TRANSPORTATION

ROUTE SIMULATION RESULTS – OPEC TERMINAL AIRPORT


Route Information	E2/FC+				
Route Name	Daily				
Distance	1.3 miles				
Duration	10 minutes				
Average Speed	8 mph				
Maximum Speed	22.5 mph				
Maximum Grade	0.4%				
Average Day Results					
Passenger Count	29				
Ambient Temperature	61.5°F				
Efficiency	1.265 kWh/mi				
MPGe	29.76				
Total Energy Consumed	1.65 kWh				
Auxiliary Accessories Energy	0.24 kWh				
HVAC Energy	0.27 kWh				
System Energy Recaptured by Regen	9%				
1 Lap Final SOC	96%				
Estimated 1 Lap Recharge Time (On-route charger)	01:10 [mm:ss]				
Environmental and Operating Impact					

Hot Dav

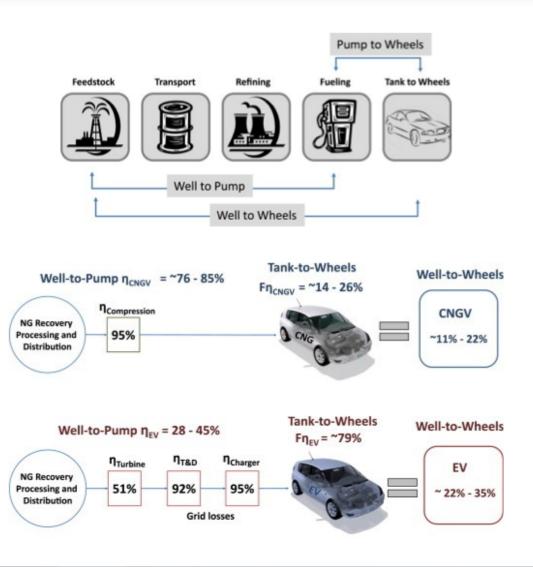
riot Day	
Passenger Count	66
Ambient Temperature	96°F
Efficiency	2.072 kWh/mi
MPGe	18.17
Cold Day	
Passenger Count	66
Ambient Temperature	36°F
Efficiency	2.082 kWh/mi
MPGe	18.08

EXAMPLE - TOTAL COST OF OWNERSHIP FLEET OF 10 - 35' BUS

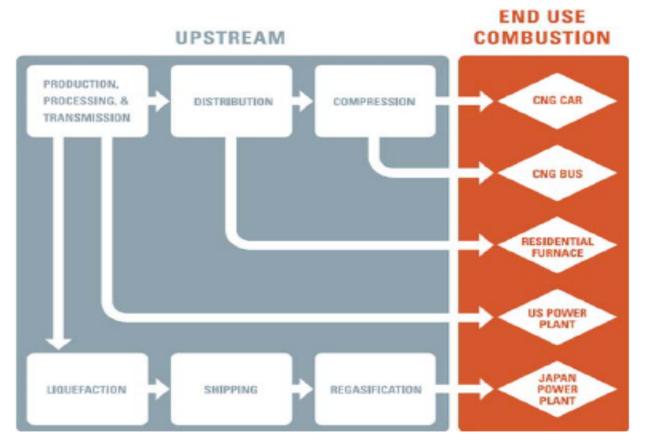
THE PROTERRA CATALYST PROVIDES AN IMMEDIATE RETURN ON INVESTMENT

This chart takes into account the emission for creating the energy or fuel and then using or BURNING it.

PER BUS					
Emission (lbs/bus/yr)	Proterra	CNG	Hybrid	Diesel	Diesel (metric tons)
СО	22	1,925	47	78	0.04
CH4	149	1,932	318	444	0.20
CH4 in CO2e	3,736	48,292	7,960	11,088	5
CO2	70,013	200,376	166,320	233,640	106
GHG - sum of 2 above, CO2e	73,899	250,600	174,598	245,172	111
NOx	47	179	152	176	0.080
VOC	7	36	18	24	0.011
PM (2.5+10)	13	8	11	13	0.006
BC	3	1	1	1	0.000


PER BUS

THIS DOES NOT REFLECT Delivery AND Distribution VEHICLE EMISSIONS - Above data from GREET US 2016


Because the use of natural gas for transportation requires compressing, liquefying, or conversion, it is important to determine the best use of natural gas as a transportation fuel. Specifically, to minimize GHG emissions and total energy use, **is it better to use natural gas in a stationary power application to generate electricity to charge EVs**, to compress natural gas for onboard combustion in vehicles, or to reform natural gas into a denser transportation fuel?

-Curran et al.

Figure 1 Processes considered in the natural gas fuel cycle (e.g., well-to-wheels or well-to-wire) for emissions analyses (see online version for colours)

Net GHG emissions savings from natural gas substitutions

The one vehicular use of natural gas that could yield substantial savings of CO₂e emissions would be to power vehicles with electricity generated from natural gas. Based on a 2013 Nissan Leaf electric vehicle, GREET computes emission savings of 41or 52 gCO₂e/MJNG relative to a conventional gasoline Civic if the electricity originates from existing natural gas power plants or new combined cycle facilities, respectively. The emission savings would be far smaller (13 or 20gCO₂e/MJNG, respectively) if the electric Leaf is instead compared to a hybrid gasoline Civic. Greater emissions associated with manufacturing the electric vehicle and its battery would cut these savings by 4 or 3 gCO₂e/MJNG relative to the conventional or hybrid vehicle, respectively, based on GREET2 vehicle cycle model calculations for a 260,000 km lifespan. The limited range and smaller size of the Leaf relative to the Civic make this an inexact substitution in terms of operating characteristics. However, the scenario highlights a more efficient potential path for powering vehicles with natural gas.

Daniel S. Cohan* and Shayak Sengupta Department of Civil and Environmental Engineering, Rice University, 6100 Main Street MS 519, Houston, TX 77005 USA Email: cohan@rice.edu Email: shayak@alumni.rice.edu

Int. J. Global Warming, Vol. 9, No. 2, 2016 Copyright © 2016 Inderscience Enterprises Ltd. Net greenhouse gas emissions savings from natural gas substitutions in vehicles, furnaces, and power Plants 267

THANK YOU.

